Cross curvature flow on locally homogenous three-manifolds, I
نویسندگان
چکیده
منابع مشابه
Cross Curvature Flow on Locally Homogenous Three-manifolds (i)
Chow and Hamilton introduced the cross curvature flow on closed 3manifolds with negative or positive sectional curvature. In this paper, we study the negative cross curvature flow in the case of locally homogenous metrics on 3manifolds. In each case, we describe the long time behavior of the solutions of the corresponding ODE system.
متن کاملCross Curvature Flow on Locally Homogeneous Three-manifolds (ii)
In this paper, we study the positive cross curvature flow on locally homogeneous 3-manifolds. We describe the long time behavior of these flows. We combine this with earlier results concerning the asymptotic behavior of the negative cross curvature flow to describe the two sided behavior of maximal solutions of the cross curvature flow on locally homogeneous 3-manifolds. We show that, typically...
متن کاملBackward Ricci Flow on Locally Homogeneous Three-manifolds
In this paper, we study the backward Ricci flow on locally homogeneous 3-manifolds. We describe the long time behavior and show that, typically and after a proper re-scaling, there is convergence to a sub-Riemannian geometry. A similar behavior was observed by the authors in the case of the cross curvature flow.
متن کاملOn Stretch curvature of Finsler manifolds
In this paper, Finsler metrics with relatively non-negative (resp. non-positive), isotropic and constant stretch curvature are studied. In particular, it is showed that every compact Finsler manifold with relatively non-positive (resp. non-negative) stretch curvature is a Landsberg metric. Also, it is proved that every (α,β)-metric of non-zero constant flag curvature and non-zero relatively i...
متن کاملThe Scalar Curvature Deformation Equation on Locally Conformally Flat Manifolds
Abstract. We study the equation ∆gu− n−2 4(n−1)R(g)u+Ku p = 0 (1+ ζ ≤ p ≤ n+2 n−2 ) on locally conformally flat compact manifolds (M, g). We prove the following: (i) When the scalar curvature R(g) > 0 and the dimension n ≥ 4, under suitable conditions on K, all positive solutions u have uniform upper and lower bounds; (ii) When the scalar curvature R(g) ≡ 0 and n ≥ 5, under suitable conditions ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pacific Journal of Mathematics
سال: 2008
ISSN: 0030-8730,0030-8730
DOI: 10.2140/pjm.2008.236.263